STEAM JET LIQUID HEATERS Installation in tanks

The steam jet liquid heaters use steam to raise the temperature of water or other liquids by direct steam injection.

They assure continuous and efficient heating, distributing the heat uniformly and avoiding stratification of liquid at different temperatures inside the tank.

Steam jet heaters prevent the typical vibrations and condensation shocks with material damage so often associated with simple perforated steam pipes.

Operation is extremely efficient because the heat in the steam is absorbed by the liquid to be heated to approximately 10% of the liquid saturation temperature.

The steam enters the heater as it immerses in the cold liquid. It passes through the nozzle that converts the pressure to kinetic energy. In the mixing throat the highspeed jet creates a depressurisation which draws the fluid to be heated through circular holes.

The mixed and heated fluid goes through a diffuser and leaves the heater with a higher pressure and a reduced speed, but still sufficient to keep the liquid circulating in the tank.

In this way a good thermal exchange is ensured.

During the start-up, using relatively cold water or if the liquid temperature is about 80°-90°C, the steam condensation might be accompanied by noise and vibration. As a remedy, a small pipe can be fitted to an auxiliary connection to draw atmospheric air to the heater through a valve.

The air added into the area around the nozzle, cushions the steam bubbles and prevents their sudden collapse as the steam condenses.

In addition, the air increases the agitation of the liquid.

If the steam pressure needs to be adjusted in order to adapt the steam amount to a lower demand, it is recommended to operate with an open/close shut-off valve to prevent the setting of a insufficient pressure ratio.

HTR JET 16 IN_thereaded connection

Stainless steel

Mod. HTR IN

Materials

Modello HTR IN

Threaded BSP connection : $Ø 1/2 \div 2''$

- Body and motive nozzle in bronze
- Body and motive nozzle in SS 304/316
- Body in cast iron, motive nozzle in SS304/316

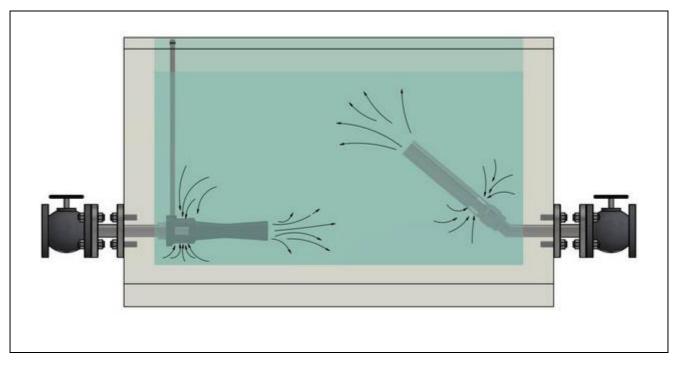
Threaded flanged connection: $\emptyset \ 1/2 \div 2''$ Body in cast iron, nozzle in AISI 304

Air valve in brass or AISI 304. Specific materials on demand

Installation

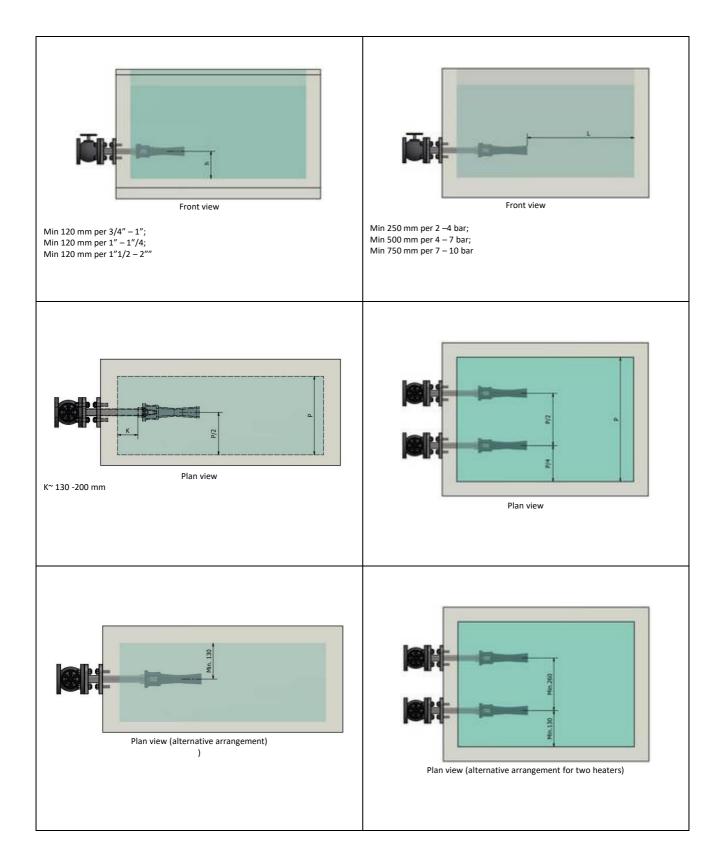
For the best possible performance, heaters are installed horizontally into the tank at a low level (water level approx. 1 or 2 mt. above the heater).

In general, arrange the injectors at one end of the tank, discharging along its length and ensure that the heater discharge does not impinge on any internal baffles, stays or pipework.


Mount the steam valve (vertical flow direction) as near as possible to the heater above the maximum liquid level.

The maximum recommended steam supply pressure for the steam injection is 11 bar.

Higher pressure may cause noise and vibration within the feed tank, usually due to the impingement of the steam on the opposite side of the tank.


The steam feed pipe can be laid inside or outside the tank.

For high heating duties several heaters can be installed, by uniformly placing them in the tank. (see recommended layout).

Recommended layouts:

Steam flow rate table

Mod. HTR IN

The data shown are calculated with the enthalpy of the steam

	HTR1 – Ø 1/2			HTR2 – Ø 3/4	
Pressure	Steam flow	Heat	Pressure	Steam flow	Heat
[bar g]	rate [kg/h]	[Kcal/h]	[bar g]	rate [kg/h]	[Kcal/h]
1	35	22.630	1	53	34.270
2	51	33.205	2	78	50.780
3	68	44.485	3	104	68.040
4	85	55.815	4	129	84.705
5	101	66.515	5	153	100.760
6	117	77.240	6	177	116.850
7	133	87.980	7	201	132.965
8	149	98.735	8	225	149.100
9	164	108.840	9	249	165.250
10	180	119.615	10	273	181.415
10	100	115.015	10	275	101.115
	HTR3 – Ø 1"			HTR4 – Ø 1″1/4	
Pressure	Steam flow	Heat	Pressure	Steam flow	Heat
[bar g]	rate [kg/h]	[Kcal/h]	[bar g]	rate [kg/h]	[Kcal/h]
1	83	53.670	1	120	77.595
2	122	79.430	2	177	115.235
3	162	105.985	3	234	153.090
4	201	131.985	4	289	189.770
5	239	157.400	5	344	226.550
6	277	182.870	6	398	262.750
7	314	207.715	7	453	299.665
8	352	233.255	8	507	335.970
9	389	258.165	9	560	371.650
10	426	283.085	10	613	407.355
	HTR5 – Ø 1" 1/2			HTR6 – Ø 2"	
Pressure	Steam flow	Heat	Pressure	Steam flow	Heat
[bar g]	rate [kg/h]	[Kcal/h]	[bar g]	rate [kg/h]	[Kcal/h]
1	188	121.560	1	301	194.630
2	227	147.790	2	443	288.415
3	365	238.795	3	586	383.380
4	452	296.800	4	725	476.065
5	538	354.315	5	863	568.350
6	623	411.290	6	999	659.515
7	708	468.350	7	1135	750.820
8	792	524.830	8	1270	841.580
9	875	580.705	9	1404	931.785
10	958	636.615	10	1538	1.022.040

To calculate the steam consumption required proceed as follows:

Ma : massa of water in kg/h

 ${\rm Ti}: {\rm Starting} \mbox{ water temperature in <math display="inline">{\rm ^{\circ}C}$

Tf: Final water temperature in °C

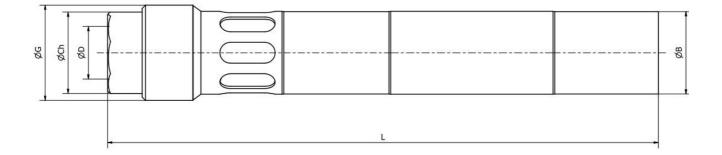
Pm : Steam pressure in bar g

H : Enthalpy of steam in kJ/kg Mv: Calcultated steam mass in kg/h

 $Mv = Ma^* (Tf - Ti) / (H - Tf)$

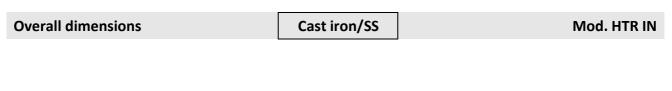
Enthalpy is in kCal / kg. To convert it from kJ / kg divide by $4.2\,$

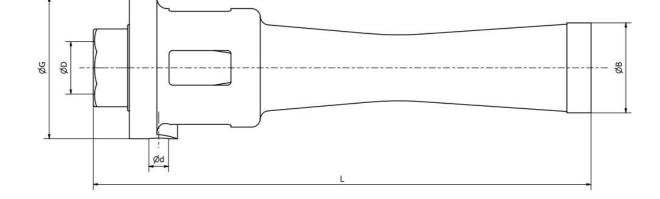
Calculation example:


We want to heat 3.5 m^3 / h of water from 15 to 60 $^\circ$ C, with steam at 4 bar g.

Mv = 3500 * (60 -15) / (654 – 60) = 265 kg/h

Steam heater mod. HTR4 - 1"1/4 is chosen.




Overall Dimensions	AISI 316	Mod. HTR IN

Mod.	\oslash D	arnothing g	Ø B	L	Ch.
HTR1	1⁄2"	39	34	210	32
HTR2	3⁄4″	49	42	250	40
HTR3	1"	55	48	320	45
HTR4	1″ ¼	60	60	380	50
HTR5	1″ ½	70	70	460	57
HTR6	2"	80	80	560	67

Mod.	Ø D	Ø G	Ø B	L	Ø d
HTR1	1/2"	60	40	190	1/8"
HTR2	3⁄4″	69	46	250	1/4"
HTR3	1″	83	53	290	1/4"
HTR4	1″ ¼	93	57	330	1/4"
HTR5	1″ ½	106	67	383	1/4"
HTR6	2″	126	84	445	3/8"

OFFICINE GIUDICI

VIA DE RUGGIERO, 17 - 20019 - SETTIMO MILANESE (MI) TEL. +39023.281.398 - FAX +390233.512.979 P.IVA 10160130158 INFO@OFFICINEGIUDICI.IT - WWW.OFFICINEGIUDICI.IT